Sort:
Version 1
1. February 2011.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by CDC, 01. February, 2011

A Conceptual Framework to Evaluate the Impacts of Water Safety Plans

by CDC, 01. February, 2011

This paper outlines a conceptual framework for conducting this type of overall evaluation of the impacts of a WSP. Drawing examples from existing WSPs in various regions, the framework also illustrates the types of intermediate outcomes that can be expected during WSP implementation. This conceptual framework, which requires some familiarity with WSPs, is designed to be one of a set of tools to guide the implementation and evaluation of Water Safety Plans, along with the WHO guidelines (WHO, 2006), the Water Safety Plan Manual (Bartram et al, 2009) and other tools and resources developed for national or regional use1

Version 1
2. March 2008.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by US Department of Health and Human Services et al., 02. March, 2008

A guide to conducting household surveys for Water Safety Plans

by US Department of Health and Human Services et al., 02. March, 2008

The aim of this manual is to provide guidance on conducting a household survey as part of a Water Safety Plan for organized piped water supply systems in resource-limited settings. A household survey can help researchers to understand the fate of water from the time it reaches the home to the point of consumption. This survey contributes to Module 2 (System Assessment) of the Water Safety Plan, upon which the subsequent steps of hazard identification, consideration of control measures, and development of corrective actions, monitoring, and verification plans are based. Thus, the survey provides valuable information for the WSP team as the team goes through the process of system evaluation and implementation of changes resulting from the Water Safety Plan. Specific examples intended to guide the planner in designing the survey are provided in the appendices. A summary checklist for survey planning and completion is provided as Appendix A.

Version 2
10. November 2015.
1 vote, average: 5.00 out of 51 vote, average: 5.00 out of 51 vote, average: 5.00 out of 51 vote, average: 5.00 out of 51 vote, average: 5.00 out of 5
0 comments
by WHO et al., 10. November, 2015

A practical guide to auditing Water Safety Plans

by WHO et al., 10. November, 2015

This document provides guidance on developing and implementing a WSP auditing scheme, covering such topics as the aim and role of auditing, auditor training and certification, audit criteria, audit timing and frequency and audit reporting. The guidance document includes examples, tips, tools and case studies, and it serves as a practical resource for policy makers, government bodies responsible for drinking-water regulation or surveillance and water suppliers implementing WSPs.

Version 1
11. August 2017.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Giuliana Ferrero et al., 17. July, 2017

A role-playing game for practising stakeholder collaboration in Water Safety Plans

by Giuliana Ferrero et al., 17. July, 2017

One of the challenges in the implementation of Water Safety Plans (WSPs) is stakeholder engagement. For this reason, IHE Delft Institute for Water Education has developed a role-playing game for practising stakeholder collaboration in WSP. The game can be used in WSP training or during educational activities for water safety and WSP at graduate and post-graduate level. Its goal is for participants to experience the importance of stakeholder engagement in WSPs, and particularly in the decision-making process when investing in the rehabilitation and maintenance of a drinking water supply system from catchment to consumers. Participants will experience how this process can be influenced by information exchange between stakeholders and how this will eventually lead to greater awareness when assembling the WSP team.

Version 2
1. November 2010.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Federica Gerber et al., 01. November, 2010

An Economic Assessment of Drinking Water Safety PlanningKoror-Airai, Palau

by Federica Gerber et al., 01. November, 2010

This document describes a preliminary economic assessment of the Koror-Airai, Palau drinking water safety plan. The information generated is to be used to inform stakeholders in Palau of the rewards from supporting the DWSP approach, demonstrating the potential benefits of investing in the Plan.

Version 0
17. October 2018.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Karen Setty et al., 01. September, 2018

Assessing operational performance benefits of a Water Safety Plan implemented in Southwestern France

by Karen Setty et al., 01. September, 2018

Aims: The World Health Organization (WHO) has recommended Water Safety Plans (WSPs)
since 2004 as a means to reduce drinking water contamination and risks to human health.
These risk management programs have shown promise across several potential areas of
evaluation, such as economic benefits and regulatory compliance. Since WSPs are largely
carried out by people who interact with water treatment equipment and processes, operational
performance indicators may be key to understanding the mechanisms behind desirable WSP
impacts such as water quality and public health improvement.
Method: This study reports performance measures collected at a WSP implementation
location in southwestern France over several years.
Results: Quantitative assessment of performance measures supported qualitative reports from
utility managers. Results indicate significantly reduced duration of low-chlorine events at one
production facility and a significant decrease in customer complaints related to water quality,
manifesting reported improvements in operational performance and the customer service
culture.
Conclusion: The findings demonstrate some success stories and potential areas of future
performance tracking. Cyclical iteration of the WSP can help to achieve continuous quality
improvement. Successfully applied evaluation criteria such as the number of water quality
complaints or alarm resolution time might be useful across other locations.

Version 1
2. November 2016.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by J.F. Loret et al., 01. October, 2016

Assessing the costs and benefits of Water Safety Plans

by J.F. Loret et al., 01. October, 2016

A survey was conducted to assess the costs and benefits of the WSPs developed at 197 production units operated by the SUEZ Company and serving a total of 10.6 million consumers in France, Spain, Cuba, Morocco and Macao. The results demonstrate benefits in terms of confidence of clients and health agencies. The main benefits however consist of a better control of hazards, especially new hazards that were previously overlooked, and of the treatments steps which are deemed as the most important for water safety. As the progress achieved is essentially linked with unregulated contaminants, improvements in compliance rate were rarely observed after implementation of WSPs. It is supposed that better control of these hazards, together with improved process control, result in improved safety for the consumers.

Version 2
1. August 2009.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Bob Breach , 01. August, 2009

Backsiphonage into the distribution network

by Bob Breach , 01. August, 2009

This document sets out information which allows water suppliers and others to work together to minimise the risk of backsiophange (that is, the reverse flow condition created by a difference in water pressures that causes water and associated contaminants to flow back into drinking-water distribution pipes).

Version 1
4. July 2011.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by WHO , 04. July, 2011

Bangladesh: Water safety plan

by WHO , 04. July, 2011

Under AusAid funding, WHO supported WSP implementation in 10 urban systems in Bangladesh. This case study reports on WSP facts, and provides a description of the status of urban and rural water supply in Bangladesh.

Version 1
17. May 2016.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by Maria J. Gunnarsdottir et al., 07. June, 2012

Benefits of Water Safety Plans: Microbiology, Compliance, and Public Health

by Maria J. Gunnarsdottir et al., 07. June, 2012

The article describes an Icelandic study to determine the impact of WSP implementation on regulatory compliance, microbiological water quality, and incidence of clinical cases of diarrhea.

Version 1
1. November 2011.
0 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 50 votes, average: 0.00 out of 5
0 comments
by World Health Organization et al., 01. November, 2011

Bhutan: Water safety plan

by World Health Organization et al., 01. November, 2011

Under AusAid funding, WHO supported WSP implementation in Bhutan. This case study reports on key facts of the WSPs, and describes the status of water supply in Bhutan.

Version 1
4. November 2016.
1 vote, average: 5.00 out of 51 vote, average: 5.00 out of 51 vote, average: 5.00 out of 51 vote, average: 5.00 out of 51 vote, average: 5.00 out of 5
0 comments
by South-East Asia Regional Office of WHO , 27. April, 2016

Capacity Training on Urban Water Safety Planning – Training Modules

by South-East Asia Regional Office of WHO , 27. April, 2016

These training materials have been developed by the South-East Asia Regional Office of WHO to be used either to train trainers or to train operators of water supply utilities or sector stakeholders. They are intended for use by governments, NGOs, private sector, academic institutions and individuals. They may be used intensively over three or five days or included in longer educational programs either as part of academic courses or as part of continuing professional development training. They comprise:
- Presenters Guide,
- Participant’s Handbook,
- PowerPoint slides notes for presenter and PowerPoint Handouts for participants,
- Worksheets and other resources for participants
- Table group worksheets for use during the training programme.